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Abstract

Patients and their families often require a bet-
ter understanding of medical information pro-
vided by doctors. We currently address this
issue by improving the identification of diffi-
cult to understand medical words. We intro-
duce novel embeddings received from RNN
- FrnnMUTE (French RNN Medical Under-
standability Text Embeddings) which allow to
reach up to 87.0 F1 score in identification
of difficult words. We also note that adding
pre-trained FastText word embeddings to the
feature set substantially improves the perfor-
mance of the model which classifies words ac-
cording to their difficulty. We study the gen-
eralizability of different models through three
cross-validation scenarios which allow test-
ing classifiers in real-world conditions: under-
standing of medical words by new users, and
classification of new unseen words by the au-
tomatic models. The RNN - FrnnMUTE em-
beddings and the categorization code are being
made available for the research.

1 Introduction

Specialized areas, such as medical area, convey
and use technical words, or terms, which are typi-
cally related to knowledge developed within these
areas. In the medical area, this specific knowledge
often corresponds to fundamental medical notions
related to disorders, procedures, treatments, and
human anatomy. For instance, technical terms like
blepharospasm (abnormal contraction or twitch of
the eyelid), alexithymia (inability to identify and
describe emotions in the self), appendicectomy
(surgical removal of the vermiform appendix from
intestine), or lombalgia (low back pain) are fre-
quently used by experts in the medical area texts.
As in any specialized areas, two main kinds of
users exist in the medical area: experts of the do-
main, i.e. medical doctors, both researchers or
practitioners; consumers of the healthcare process,

i.e. patients and their relatives. The latter usually
do not have expert knowledge in the medical do-
main, while it is important that they understand the
purpose and issues of their healthcare process.

The existing literature provides several stud-
ies dedicated to the understanding of medical no-
tions and terms by non-expert users, and of how
the level of health literacy of patients impacts on
a successful healthcare process (McCray, 2005;
Eysenbach, 2007), as indeed it is quite common
that patients and their relatives must face technical
health documents and information. These obser-
vations provide the main motivation for our work.
Hence, we address the need of non-specialized
users in the medical domain to understand medi-
cal and health information.

In this paper, we propose to apply deep learning
techniques to improve identification of readability
and understandability of medical words by non-
expert users. In particular, we will tackle the word
categorization task and compare the performance
of classification model on different feature sets:
standard linguistic and non-linguistic features de-
scribed in section 4, features obtained using dif-
ferent deep learning approaches, and the combi-
nations of all of them. We also investigate how
different feature sets perform with three different
cross-validation settings, described in section 5.
The medical data used in this work are in French.
Three human annotators participated in the cre-
ation of the reference data (specifying the under-
standability of words).

2 Related Work

Related work is globally positioned in the text
simplification task which involves the detection of
complex contents in documents and their adapta-
tion for the target population. We are also inter-
ested in the first aspect with additional constraints:



detection and diagnosis of technical contents in
texts from medical domain.

Traditional readability measures rely on two
main factors: the familiarity of semantic units
such as words or phrases, and the complexity
of syntax. To make these measures straightfor-
ward for applications, some simplifying assump-
tions were used. As a result, final formulas mostly
rely on the number of letters and/or of syllables
a word contains and on linear regression mod-
els (Flesch, 1948; Gunning, 1973). While such
readability measures are easy to compute, they
are based on shallow characteristics of text, ig-
noring deeper levels of text processing which are
important factors in readability, such as cohesion,
syntactic ambiguity, rhetorical organization, and
propositional density (Collins-Thompson, 2014).
Moreover, traditional readability measures were
demonstrated to be unreliable for non-traditional
documents (Si and P. Callan, 2001). As a result
of such limitations and due to the recent growth
of computational and data resources, the focus of
NLP researchers moved to computational read-
ability measurements, which rely on the use of ma-
chine learning algorithms on richer linguistic fea-
tures (Malmasi et al., 2016; Ronzano et al., 2016;
Bingel et al., 2016).

Not so much effort has been devoted to the ex-
ploitation of NLP potential in the measurement
of readability of medical texts. In the biomed-
ical domain, as well as in general language, the
readability assessment is currently approached as
a classification task. The difference is that in
the former a much smaller variety of features has
been tested: a combination of classical readabil-
ity formulas with medical terminologies (Kokki-
nakis and Toporowska Gronostaj, 2006); n-grams
of characters (Poprat et al., 2006); stylistic (Grabar
et al., 2007) or discursive (Goeuriot et al., 2008)
features; morphological features (Chmielik and
Grabar, 2011); combinations of different features
from those listed above (Zeng-Treiler et al., 2007).
Among the recent experiments dedicated to read-
ability study in the medical domain are, for exam-
ple, manual rating of medical words (Zheng et al.,
2002), automatic rating of medical words on the
basis of their presence in different vocabularies
(Borst et al., 2008), exploitation of machine learn-
ing approach with various features (Grabar et al.,
2014). The last experiment achieved up to 85.0
F-score on individual annotations.

Due to the recent significant advance in read-
ability study in general language and relatively
slow progress with the task in the medical area,
there is a great potential of experimenting with
the machine learning-based approaches on medi-
cal texts. This fact motivated us for choosing this
kind of methodology.

3 Materials

For the experiments, we used the publicly avail-
able set of words with annotations1. The process
of words collection and annotation is briefly de-
scribed below.

3.1 Linguistic data description

The set of required biomedical terms was obtained
from the French part of Snomed International2

(Côté et al., 1993). Snomed Int contains 151,104
medical terms organized into eleven semantic axes
such as disorders and abnormalities, procedures,
chemical products, living organisms, anatomy, so-
cial status, etc. For the word understandability
study, five axes related to the main medical no-
tions were chosen: disorders, abnormalities, pro-
cedures, functions, and anatomy. These cate-
gories are assumed to be faced frequently by lay-
man. In contrast, chemical products and living or-
ganisms are excluded because they mainly corre-
spond to Latin borrowings and are typically non-
understandable by laypeople.

The 104,649 selected terms were then pro-
cessed. First, they were tokenized, POS-tagged
and lemmatized using TreeTagger (Schmid, 1994).
Then the lemmatization was checked with
FLEMM (Namer, 2000). After that we received
29,641 unique words. For instance, the term trisul-
fure d’hydrogène provided three words (trisulfure,
de, hydrogène). The final dataset contains com-
pound words which contain several bases (ab-
dominoplastie (abdominoplasty), dermabrasion
(dermabrasion)), constructed words which contain
one base and at least one affix (lipoı̈de (lipoid),
cardiaque (cardiac)), simple words which con-
tain one base, no affixes and possibly infections
when the lemmatization fails (acné (acne), frag-
ment (fragment)).

1http://natalia.grabar.free.fr/
resources.php#rated

2https://esante.gouv.fr/
terminologie-snomed-35vf

http://natalia.grabar.free.fr/resources.php#rated
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Annotators / Categories Cat1 Cat2 Cat3 Total
O1 (%) 8,099 (28) 1,895 (6) 19,647 (66) 29,641
O2 (%) 8,625 (29) 1,062 (4) 19,954 (67) 29,641
O3 (%) 7,529 (25) 1,431 (5) 20,681 (70) 29,641

Table 1: Number (and percentage) of words assigned to reference categories by seven annotators (O1, O2, O3).

3.2 Annotation process

The set of 29,641 unique words was annotated
by three French speakers, 25-40-year-old, without
medical training, without specific medical prob-
lems, but with the linguistic background. The an-
notators were expected to represent the average
knowledge of medical words among the popula-
tion as a whole. They were presented with a list
of terms and asked to assign each word to one of
the three categories: (Cat1) I can understand the
word; (Cat2) I am not sure about the meaning of
the word; (Cat3) I cannot understand the word.
The annotators were asked not to use dictionaries
during the annotation process. The interannotator
agreement shows substantial agreement: Fleiss’
Kappa 0.735 and Cohen’s Kappa 0.736. This is
a very good result, especially when working with
linguistic data for which the agreement is usually
difficult to obtain. The annotation results are rep-
resented in Table 1.

4 Method

We aim to categorize medical words according
to whether they can be understood or not by
non-specialized people, using features obtained
with NLP tools and with deep learning meth-
ods. The manual annotations of these words de-
scribed in the previous section provide the refer-
ence data. The proposed method includes calcula-
tion of NLP features associated with the annotated
words, training machine learning models for word
classification, and evaluation of classification us-
ing cross-validation.

4.1 Feature sets

We distinguish and use two kinds of features: stan-
dard features provided by the NLP analysis of
words, and features issued from existing or specif-
ically trained word embeddings. These two types
of features are first opposed and then combined.

4.1.1 Standard NLP features
The standard NLP features include 24 linguistic
and extra-linguistic features related to general and

specialized languages. The features are computed
automatically and can be grouped into ten classes:

• Syntactic categories. Syntactic categories
and lemmas are computed by TreeTag-
ger (Schmid, 1994) and then enriched by
FLEMM (Namer, 2000).

• Presence of words in reference lexica. Two
reference lexica of the French language were
exploited: TLFi3 and lexique.org4. TLFi is
a dictionary of the French language cover-
ing XIX and XX centuries. It contains al-
most 100,000 entries. lexique.org is a lexicon
created for psycholinguistic experiments. It
contains over 135,000 entries, among which
inflectional forms of verbs, adjectives and
nouns, and almost 35,000 lemmas.

• Frequency of words through a non special-
ized search engine. Each word were queried
on Google to find out the frequency of the
word on the web.

• Frequency of words in the medical terminol-
ogy. The frequency of words in the medical
terminology Snomed Int corresponds to the
number of different terms containing a given
word.

• Number and types of semantic categories as-
sociated to words. The information on the
semantic categories of Snomed Int was ex-
ploited.

• Length of words in number of their charac-
ters and syllables. For each word, the number
of its characters and syllables was computed.

• Number of bases and affixes. Each lemma
was analyzed by the morphological analyzer
Dérif (Namer and Zweigenbaum, 2004),
adapted to the treatment of medical words.
It performs the decomposition of lemmas
into bases and affixes known in its database

3http://www.atilf.fr/
4http://www.lexique.org/

http://www.atilf.fr/
http://www.lexique.org/


and it provides also semantic explanation of
the analyzed lexemes. The morphological
decomposition information (number of af-
fixes and bases) was exploited. For instance,
hématomètre (haemometer) is analyzed and
decomposed into two basis (hémato mean-
ing blood and mètre meaning measure, while
myélite (myelitis) is decomposed into myél
meaning marrow and ite meaning inflamma-
tion.

• Initial and final substrings of the words. Ini-
tial and final substrings of different length,
from three to five characters, were computed.

• Number and percentage of consonants, vow-
els and other characters. The number and the
percentage of consonants, vowels and other
characters (i.e., hyphen, apostrophe, comas)
was computed.

• Classical readability scores. Two classical
readability measures were applied: Flesch
(Flesch, 1948) and its variant Flesch-Kincaid
(Kincaid et al., 1975). Such measures are
typically used for evaluating the difficulty
level of a text.

4.1.2 FastText word embeddings usage.
FastText word embeddings (Bojanowski et al.,
2017) is a good candidate feature for the detec-
tion of word difficulty because they are able to use
the morphological information of words and gen-
eralize over it. Since the word embeddings cap-
ture context and morphological information, we
assume that using them as features will improve
classification accuracy for our specific problem.

We note that FastText word embeddings trained
on Wikipedia and Common Crawl5 texts have an
important part of words from our dataset. Accord-
ing to our analysis, the currently published Fast-
Text6 model for French contains 44.26% (13,118
out of 29,641) medical words from our dataset and
up to 56.00% (16,598 out of 29,641) lowercased
medical words from our dataset.

4.1.3 French RNN Medical
Understandability Text Embeddings
(FrnnMUTE).

According to the general functionality of RNNs,
the final hidden state aggregates the informa-

5http://commoncrawl.org/
6https://fasttext.cc

tion about all input sequence. This idea is fre-
quently used to receive hidden representations of
sequences. Sequence-to-sequence model is a well-
known example of how this idea works in practice
(Sutskever et al., 2014). Such models consist of
two parts: an encoder is an RNN which encodes
the input sequence into a representation in hidden
space (which is also called thought vector), and a
decoder which generates a new sequence out of
the hidden representations.

We used this idea for representing words from
our dataset. To receive words representations from
an RNN, we first trained it to classify words based
on labels by one annotator (we choseO1), then for
each word we collect values of the last hidden state
of the RNN and use this vector as features during
the detection of words understandability for dif-
ferent users (or annotators). Train/test split was
70%/30% of randomly shuffled samples.

As a direct classifier, we trained a character-
level RNN using PyTorch framework7 and one
GPU Tesla K80. We lowercased all words, lem-
matized them and substituted all Unicode symbols
with their ASCII analogs. We tested several RNN
architectures and hyperparameter sets. The best
performance was reached with a model consist-
ing of two unidirectional long short-term mem-
ory (LSTM) units, each with 50 hidden units. The
dropout of the model is 0.7. The input size is 57 as
the number of unique characters in lowercased and
converted to ASCII input words. The output size is
3 as the number of classes in our data. This model
reached the best performance on the eighth epoch
with F1 = 78.94 and accuracy = 81.21% on de-
velopment set. Using this model we received 50-
dimensional word representations which we called
FrnnMUTE (French RNN Medical Understand-
ability Text Embeddings).

5 Experiments and Results

We study the impact of adding words embeddings
as features for identifying difficult for understand-
ing words. First, we observe how FastText word
embeddings influence the quality of classification
in different cross-validation scenarios. Then, we
study how FrnnMUTE used as features impact
on classification quality in all the same cross-
validation scenarios. The quality of the classifi-
cations is evaluated using four standard macroav-
eraging (Sebastiani, 2002) measures: accuracy A,

7https://pytorch.org/

http://commoncrawl.org/
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precision P , recall R and F1-measure F .

5.1 Cross-validation scenarios

For a thorough study of generalization abilities of
the classification models, we propose to consider
three distinct cross-validation scenarios based on
different combinations of users and vocabulary in
train and test sets.

5.1.1 User-in vocabulary-out cross-validation
The cross-validation is performed on each dataset
(i.e., each user annotation) separately. We aim to
measure the ability of the classification model to
generalize class recognition on the known user and
to predict annotations for unknown words. From
the practical perspective, user-in means learning
the profile of a user. Hence, a model trained by
such scenario represents the word understanding
or knowledge of the annotator.

The experiments use (i) the standard features
only, (ii) the FastText word embeddings only and
(iii) their combination. The experiments with iso-
lated FastText word embeddings as features re-
sulted in poor F1 scores (Table 2), that can be
explained by the fact that contextual information,
which is dominant in these word embeddings, is
not enough to define the word understandability.
Adding the FastText word embeddings to the stan-
dard feature set resulted in up to 1.0 higher F1
score due to higher Precision (up to 1.8), meaning
that contextual information slightly impacts on the
understandability of a word by a given person.

5.1.2 User-out vocabulary-in cross-validation
We then learn from all the annotations of one user
and then test the model on annotations of another
user. Thereby, in such a setting, we measure the
ability of the classifier to generalize on all known
words, but for unknown users. This scenario is re-
alistic to a real-world situation: the reference an-
notations can be obtained only from a couple of
users, presumably representing the overall popu-
lation, but not from all the possible users. In this
scenario, the model learns the profile of a user and
we want to identify whether a new user has the
same profile as another user. Then it can be used
for identification of not understandable words for
the new users.

These experiments show a substantial improve-
ment of combined features in comparison to the
standard features (Table 3). When knowledge of
words understandability of one user is used to

predict it for another user, adding the FastText
word embeddings provides up to 2.9 better F1
score. Used separately, standard features and em-
beddings show similar performance as in user-in
vocabulary-out cross-validation (Table 2). We as-
sume that there exists a robust nonlinear depen-
dency between some subsets of standard features
and subword-level components of FastText word
embeddings. Testing this hypothesis is the topic
of future work.

5.1.3 User-out vocabulary-out
cross-validation

Finally, we consider (k-1) folds of data from one
user for training and use k-th fold for testing from
the remaining user. We aim to measure the abil-
ity of the method to generalize both on unknown
users and unknown vocabulary. This experiment
should be helpful in identifying the number of
words needed for determining whether the profile
of one user is the same as profile of other users in
case the model achieves good performance.

In these experiments, FastText word embed-
dings provide approximately 0.5% higher F1 score
in case of learning on users O1 and O3 (Table 4).
When learning on user O2, embeddings decrease
F by 0.5, which means that annotations and health
literacy of user O2 are different from users O1 and
O3. It seems that adding embeddings makes over-
fitting the machine learning model to the dataset.
As a result, tests on other ”kind of word under-
standability” and combined features are less suc-
cessful compared to using standard features only
for learning. This may also be due to the lack of
systematicity in annotations of O2.

5.2 FrnnMUTE impact study

The FrnnMUTE embeddings were used separately
and in combination with standard features and
with FastText word embeddings for classifying
medical words with the decision tree algorithm.
To simplify the process of analyzing and compar-
ing the results of this and the previous part, we ag-
gregated the resulting F1 scores for combinations
of a feature set and cross-validation scenario over
all available users (Table 5). We observed that,
in all cross-validation scenarios, our FrnnMUTE
performs better when used separately by compari-
son with the FastText word embeddings used sepa-
rately. FrnnMUTE provides the maximal F1 score
(79.5) among user pairs versus the F1 score pro-
vided by the FastText word embeddings in user-in



Train
user

Test
user

Standard features FastText embeddings
Standard features +
FastText embeddings

A P R F A P R F A P R F

O1 O1 82.5 77.2 82.5 79.8 72.5 67 72.5 69.3 82.4 79 82.4 80.2
O2 O2 82 78.9 82 80 73.5 69.9 73.5 71.3 81.9 79.5 81.9 80.3
O3 O3 85.5 81.2 85.5 83.2 74.9 70.4 74.9 72.3 85.9 83 85.9 84.2

Table 2: Experiments on user-in vocabulary-out cross-validation. The best score for a combination of quality
measure and experiment is in bold.

Train
user

Test
user

Standard features FastText embeddings
Standard features +
FastText embeddings

A P R F A P R F A P R F

O1 O2 81.7 78.6 81.7 80.1 74 70.3 74 71.2 84.2 82 84.2 82.8
O1 O3 85 81.2 85 83 75.4 70.7 75.4 72.6 87.6 84.9 87.6 85.9
O2 O1 82.2 77 82.2 79.1 72.8 67.3 72.8 69.6 83.9 80.2 83.9 81.1
O2 O3 85.4 81.1 85.4 83 75.3 71.1 75.3 73 86.8 83.5 86.8 84.7
O3 O1 82.8 77.4 82.8 79.7 72.7 67.1 72.7 69.4 84.9 81.3 84.9 82.4
O3 O2 82.2 79 82.2 80.2 74.1 70.4 74.1 71.6 84.2 82.1 84.2 82.8

Table 3: Experiments on user-out vocabulary-in cross-validation.

Train
user

Test
user

Standard features FastText embeddings
Standard features +
FastText embeddings

A P R F A P R F A P R F

O1 O2 81.7 78.6 81.7 80.1 73.6 69.9 73.6 71.3 81.8 79.8 81.8 80.6
O1 O3 85 81.2 85 83 74.8 70.4 74.8 72.4 84.9 82.2 84.9 83.4
O2 O1 82.2 76.9 82.2 79.1 72.5 66.9 72.5 69.3 81.7 77.5 81.7 79.1
O2 O3 85.3 81 85.3 83 75.1 70.7 75.1 72.7 84.4 81.3 84.4 82.5
O3 O2 82.7 77.3 82.7 79.7 72.5 66.9 72.5 69.2 82.6 78.9 82.6 80.2
O3 O3 82.1 79 82.1 80.1 73.8 70.2 73.8 71.4 82.2 80 82.2 80.7

Table 4: Experiments on user-out vocabulary-out cross-validation.

user-in user-out user-out
vocabulary-out vocabulary-in vocabulary-out
µ ± σ max µ ± σ max µ ± σ max

Standard features 77.7 ± 5.2 83.4 77.7 ± 4.9 84.4 77.6 ± 4.9 84.3
FT emb 67.9 ± 5.7 75.1 67.6 ± 5.3 75.3 67.3 ± 5.2 74.9
FrnnMUTE 75.1 ± 3.9 79.5 77.1 ± 3.9 82.4 74.5 ± 3.9 79.6
Standard features + FT emb 78.9 ± 5.1 85.2 79.5 ± 4.6 86.9 77.1 ± 4.6 84.6
Standard features + FrnnMUTE 80.0 ± 5.1 85.8 80.3 ± 4.3 87.0 78.6 ± 4.4 85.2

Standard features + FT emb
+ FrnnMUTE

79.9 ± 5.0 85.8 80.4 ± 4.3 87.4 78.1 ± 4.3 85.2

Table 5: Mean, standard deviation and maximum of F1 scores



vocabulary-out cross-validation (75.1). Similarly,
the F1 score is higher on the user-out vocabulary-
in experiment (82.4 versus 75.3), and in the user-
out vocabulary-out experiment (79.6 versus 74.9).
The FrnnMUTE results have the smallest disper-
sion (3.8-3.9) among all considered ”solo” fea-
ture sets types (4.8-5.3) when aggregated by all
available users. This means that FrnnMUTE are
more robust in generalizing information from user
to user and between different subsets of vocabu-
lary. For the user-in vocabulary-out and the user-
out vocabulary-out experiments the combination
of standard features and FrnnMUTE in almost all
cases shows the best performance among all fea-
ture sets. We can observe that the difference in F1
reaches 2.9 for some user pairs and that the max-
imum improvement achieved by combining stan-
dard features with FrnnMUTE over using standard
features only hits 5.2 in F-measure. This testifies
that FrnnMUTE helps standard linguistic and non-
linguistic features to capture word understandabil-
ity better than FastText embeddings. The fact that
the combination of all three feature sets performs
insignificantly better of even worse than standard
features with only FrnnMUTE can be explained
by the overfitting of the classification model in the
first case because the resulting feature vector has
the biggest dimensionality.

6 Conclusion

We tackle the prediction of understanding of
French medical words by using FastText word em-
beddings as features. Yet, the embeddings solely
as features are not enough for good word catego-
rization. Whereas adding FastText word embed-
dings to standard features results in a substantial
improvement of classification model performance
when generalizing them to unknown users. We
also proposed a novel type of embeddings trained
on reference data from one annotator, and called
them FrnnMUTE (French RNN Medical Under-
standability Text Embeddings). Compared with
the case of using only standard features with and
without FastText word embeddings, the combi-
nation of our FrnnMUTE with standard features
substantially improves the performance of clas-
sification model. This indicates that FrnnMUTE
capture better the specifics of medical words re-
quired for identifying their understandability by
users, than FastText word embeddings. The Frn-
nMUTE embeddings and the categorization code

are being made publicly available for scientific
non-commercial purposes8.

We have several directions for future work. Cur-
rently we use the existing word embeddings pre-
trained on Wikipedia and Web Crawl. We assume
that training words embeddings on medical data
may improve their impact on the results from cate-
gorization of medical terms. Another issue is that,
after analysis of results of the application of Fast-
Text word embeddings in a categorization task, we
assumed the existence of a robust nonlinear de-
pendency between some subsets of standard fea-
tures and subword-level components of FastText
word embeddings. We plan to test this hypothesis
in further research. Finally, while the annotations
go forward, the annotators usually show learning
progress in decoding the morphological structure
of terms and their understanding. This progress is
not taken into account in the current experiments,
and is also the topic of our future research.
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