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ABSTRACT
Pharmacovigilance is the activity related to the collection,
analysis and prevention of adverse drug reactions (ADRs) in-
duced by drugs or biologics. The detection of adverse drug
reactions is performed thanks to statistical algorithms and
to groupings of ADR terms. Standardized MedDRA Queries
(SMQs) are the groupings which become a standard for as-
sisting the retrieval and evaluation of MedDRA-coded ADR
reports all through the world. Currently 84 SMQs have been
created manually by experts, while several important safety
topics are not yet covered. Dependent on the context of
their application, these SMQs show a high degree of sensi-
tivity and often appear to be over-inclusive. For pharma-
covigilance experts it represents an important and tedious
filtering of data. The objective of this work is to propose an
automatic method for assisting the creation of SMQs and
also for the refinement of their organization further to the
creation of smaller clusters of ADR terms. In this work we
propose to exploit the semantic distance and clustering ap-
proaches. We perform several experiments and vary several
parameters of the method.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods; I.5.3 [Pattern Recognition]:
Clustering; J.3 [Computer Applications]: Life and Med-
ical Sciences
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1. INTRODUCTION
Pharmacovigilance is the activity related to the collection,

analysis and prevention of adverse drug reactions (ADRs)
likely to be caused by drugs or biologics. The collection
of ADRs is achieved thanks to the case reporting to the
pharmacovigilance authorities and also to the pharmaceuti-
cal industries by medical doctors or by pharmacists. Before
their inclusion in pharmacovigilance databases, the ADRs
of these case reports are coded with terms from dedicated
terminologies, such as MedDRA (Medical Dictionnary for
Drug Regulatory Activities) [5]. The analysis of the col-
lected ADRs is related to the safety surveillance within these
databases. It often relies on the identification of signals, that
are unexpected relations or not yet well defined relations be-
tween a drug and an ADR. Statistical methods are typically
used in the analysis process [18, 2], nevertheless, it has been
observed that some pairs {drug, adverse reaction} are not
activated, when they should be. The main cause then is
that MedDRA is a fine-grained terminology containing over
85,000 terms and that the encoding of the adverse reactions
with these terms may have an impact on the signal dissolu-
tion [9]. This means that similar and close ADRs may be
encoded with different MedDRA terms, in which case, dur-
ing the analysis of the databases they will remain isolated
and the safety risk detection may be under-estimated. For
instance, terms such as Hepatitis infectious, Hepatitis infec-
tious mononucleosis or Hepatitis viral are different although
they mean close and medically related ADRs. When mining
the pharmacovigilance databases, it may be useful first to
cluster together semantically and medically close terms and
then to exploit these clusters for the satefy surveillance [10].

In that purpose, SMQs (Standardized MedDRA Queries)
have been created. At the heart of the SMQs is a precise
medical definition of a pathology and the SMQs tend to
group the terms associated with this pathology. The SMQs
are defined by groups of experts through a manual study
of both the MedDRA’s structure and the scientific litera-
ture [6]. It is a long and meticulous task. Now there are
84 SMQs that cover several important medical conditions,
as for instance Glaucoma, Hypertension, Cardiomyopathy or
Retinal disorders. But several other SMQs are still to be
defined.

Evaluation studies of the SMQs have demonstrated that
SMQs often present a very high sensibility [20, 24], and
tend to be over-inclusive [24]. In such a case, the eval-



Figure 1: Graph or path-based distance between two
terms.

uation of case reports found with the SMQs can be very
time-consuming because these reports might lack specificity:
their treatment by experts is then very long and tedious. A
solution might be the creation of hierarchically structured
SMQs, which can be exploited and combined among them
to obtain a higher specificity. Among the 84 existing SMQs
only 20 are provided with a hierarchical structure.

2. OBJECTIVES
The objective of this work is to explore and to adapt auto-

matic methods which could be used for assisting the build-
ing process of the SMQs and also for the refinement of the
SMQs’ structure.

More precisely, we propose to exploit the semantic dis-
tance approaches. Several of these approaches are applied
within the tree structures [26, 32, 14, 22], such as terminolo-
gies or ontologies, and rely on the number of edges (links)
between the two terms in order to compute the semantic
distance between these terms. The simplest approach [26],
which was the first of its kind, relies on counting edges be-
tween terms and on finding the shortest path between them.
Thus, on figure 1 we have an excerpt from a terminological
graph with nine nodes. When we compute the shortest path
between the two blue nodes Acute peritonitis and Abdominal
abscess, we follow the blue path and obtain the shortest dis-
tance equal to three edges. In addition to the path length,
other criteria may be taken into account: hierarchical depth
of terms [30, 33], information content [27], the nearest com-
mon parent [15], etc. Besides the computing of the seman-
tic similarity between two terms or words, these approaches
have been used in different contexts such as: word-sense
disambiguation [30], information retrieval [13, 33], gene an-
otation [16], terminology enriching and adaptation [31, 8].

In a previous work of our group, the semantic distance
was applied to a subset of pharmacovigilance terms [4, 11],
and the obtained groupings demonstrated several types of
relations: synonyms, antonyms, physiological functions or
abnormalities, associated symptoms, abnormal laboratory
tests, pathologies and their causes, close anatomical localiza-
tions, degrees of severity, and several heterogeneous group-
ings. None of them could be used as the basis for SMQs cre-
ation nor appeared to be close to the content of the SMQs.
Another work of our group proposed to create groupings of
pharmacovigilance terms on the basis of hierarchical sub-
sumption (terminological reasoning) [12]. These results are
compared with 24 SMQs and we will refer to these results in
the discussion section. Despite the availability of the seman-

Level Expanded form Nb Terms
SOC System Organ Class 26
HLGT High Level Group Terms 332
HLT High Level Terms 1,688
PT Preferred Terms 18,209
LLT Lowest Level Terms 66,587
Total 86,842

Table 1: Hierarchical levels of MedDRA: number of
terms per level.

Figure 2: Projection of the MedDRA terms (on the
left) towards the SNOMED CT terms (on the right),
as illustrated in [1].

tic distance and terminological reasoning approaches, their
application for this kind of task remains an objective hard
to reach. In our work, we propose several experiments and
tests in order to adapt the semantic distance approaches to
the creation of clusters of semantically and medically related
pharmacovigilance terms.

3. MATERIAL
The exploited material is specific to the pharmacovigi-

lance area. We exploit terms from the MedDRA terminol-
ogy, designed for the encoding of adverse drug reactions in-
duced by drugs. It contains a large set of terms (signs and
symptoms, diagnostics, therapeutic indications, complemen-
tary investigations, medical and surgical procedures, med-
ical, surgical, family and social history). These terms are
structured within five hierarchical levels indicated in table
1: SOC (System Organ Class) terms belong to the highest
level, while LLT (Lowest Level Terms) terms belong to the
lowest level. Terms from the PT (Preferred Terms) level are
usually exploited in the pharmacovigilance safety surveil-
lance. Most often, the role of the LLT terms is to provide
the PT terms with synonyms or equivalent terms, although
it happens that they have hierarchical relations with PT
terms [17].

3.1 Ontology ontoEIM
The ontology of adverse drug reactions ontoEIM [1] has

been created through the projection of MedDRA on the ter-
minology SNOMED CT [29], as illustrated on figure 2. This
projection is performed thanks to the exploitation of the
UMLS [23], where an important number of terminologies
are already merged and aligned, among which MedDRA and
SNOMED CT. Note that the current rate of alignment of
the PT MedDRA terms with those from SNOMED CT is
rather weak: 51.3% (7,629 terms). The projection of Med-
DRA on SNOMED CT aims at improving the representation
of MedDRA terms. The first advantage is that the structur-
ing of MedDRA terms becomes parallel to the structuring



ID Names of the hierarchical SMQs Number of PT PT+LLT
levels s-smq

20000074 Adverse pregnancy outcome 2 4 1683 6013
20000118 Biliary disorders 3 11 176 699
20000049 Cardiac arrhythmias 4 12 131 662
20000060 Cerebrovascular disorders 3 5 198 861
20000035 Depression and suicide/self-injury 2 2 137 1028
20000100 Drug abuse, dependence and withdrawal 2 2 42 568
20000081 Embolic and thrombotic events 2 3 277 1048
20000095 Extrapyramidal syndrome 2 4 92 588
20000137 Gastrointestinal nonspecific inflammation 2 3 138 835
20000103 Gastrointestinal perforation, ulceration 2 5 309 1760
20000027 Haematopoietic cytopenias 2 4 119 452
20000038 Haemorrhages 2 2 422 2113
20000170 Hearing and vestibular disorders 2 2 100 486
20000005 Hepatic disorders 4 13 333 1201
20000043 Ischaemic heart disease 2 2 107 585
20000090 Malignancies 2 4 1839 8036
20000109 Oropharyngeal disorders 2 5 250 1104
20000085 Premalignant disorders 2 5 248 821
20000066 Shock 2 6 179 961
20000159 Thyroid dysfunction 2 2 160 701

Table 2: SMQs with hierarchical organization of their terms. We indicate the number of hierarchical levels
and of sub-SMQs, and also the number of PT terms and PT and LLT terms.

in SNOMED CT, which makes it more fine-grained [1]: the
SNOMED CT-like hierarchy is constructed and new terms
are added to fill in the intermediate levels absent among
MedDRA terms. The maximal number of the hierarchical
levels within the ontoEIM resource can reach up to 14, while
only five levels are provided in MedDRA. This improvement
makes the application of the semantic distance and similar-
ity measures a well-founded solution. Another advantage is
that the MedDRA terms receive formal definitions. Thus,
terms can be defined on up to four axes from SNOMED,
exemplified here through the term Arsenical keratosis:

• Morphology (type of abnormality): Squamous cell neo-
plasm, Morphologically abnormal structure;

• Topography (anatomical localization): Skin structure,
Structure of skin and or surface epithelium;

• Causality (agent or cause of the abnormality): Arsenic
AND OR arsenic compound;

• Expression (manifestation of the abnormality in the
organism): Abnormal keratinization.

The names of the formal definition axes (Morphology, To-
pography, etc.) historically correspond to the names of the
semantic hierarchies of the Snomed International [7], but the
definitions themselves have been extracted from the SNO-
MED CT resource. Note that the formal definitions are not
complete either: only 12 terms receive formal definitions
with these four axes and 435 terms are defined with three of
the four axes. 2,846 terms have definitions with two axes,
and 1,695 more with only one axis. On the one hand, this is
due to the fact that the projection of MedDRA terms is not
complete, or that there are missing relations, often with mor-
phology terms. On the other hand, these four elements are
not relevant for every term and their absence is not always

wrong. Despite the shortcomings of this material, ontoEIM
(MedDRA terms, their structuring and formal definitions)
is our main material exploited for the creation of clusters of
adverse drug reactions.

3.2 Standardized MedDRA Queries
Among the 84 existing SMQs, we exploit mainly the 20

SMQs which have a hierarchical structure. In table 2, we
indicate the names of these SMQs as well as the number
of hierarchical levels, the number of their sub-SMQs and
the number of PT and PT+LLT terms they contain. These
hierarchical SMQs are structured in different ways. For in-
stance, some SMQs have several hierarchical levels: Cardiac
arrhythmias and Hepatic disorders are divided into up to
four levels of sub-SMQs. Consequently, they have a large
number of sub-SMQs: 12 and 13 respectively. Although,
the majority of the hierarchical SMQs has only two hier-
archical levels, and the number of their sub-SMQs varies
from two to six. Let us show some examples on how the
hierarchical SMQs may be organized. The SMQ 20000060
Cerebrovascular disorders has three hierarchical levels and
five sub-SMQs (in brackets we indicate the numbers of PT
terms at a given level):

• Cerebrovascular disorders (198)

– Central nervous system haemorrhages and cere-
brovascular conditions (30)

∗ Ischaemic cerebrovascular conditions (67)

∗ Haemorrhagic cerebrovascular conditions (35)

∗ Conditions associated with central nervous sys-
tem haemorrhages and cerebrovascular acci-
dents (30)

– Cerebrovascular disorders, not specified as haem-
orrhagic or ischaemic (18)



The ADR terms of this SMQ are categorized either under
the sub-SMQs or directly under the global SMQ. As for the
SMQ 20000038 Haemorrhages, it has only two hierarchical
levels and only two sub-SMQs:

• Haemorrhages (422)

– Haemorrhage terms (excl laboratory terms) (331)

– Haemorrhage laboratory terms (91)

All the ADR terms are categorized within the sub-SMQs:
no direct dependencies of terms exists with the global SMQ.

We exploit the 20 SMQs and their 92 sub-SMQs (2010 ver-
sion) as the gold standard for the evaluation of the clusters
of terms we generate with our approach. The evaluation is
thus performed at two levels: at the level of the whole SMQs
and at the level of their sub-SMQs.

4. CREATION OF CLUSTERS OF THE MED-
DRA TERMS AND THEIR REFINEMENT

The proposed method is organized in three main steps: (1)
computing of the semantic distance and similarity between
MedDRA terms, (2) clustering of the MedDRA terms, (3)
and evaluation of the obtained clusters against the SMQs
and sub-SMQs. Figure 3 illustrates the steps of the method.
For the implementation, we exploit Perl and R1 languages.

4.1 Computing of the semantic distance and
similarity between terms

Semantic distance is computed between the 7,629 PT Med-
DRA terms present in the ontoEIM resource. We exploit
only the PT terms because they contitute the SMQs, they
are used for the coding of the pharmacovigilance case re-
ports worlwide, and if necessary they can bring their LLT
terms. During this step, we exploit the approaches (one se-
mantic distance and two semantis similarities) to compute
the distance between two terms (or terms) c1 and c2:

• the Rada approach [26] computes the distance and re-
lies on the detection and computing of the shortest
path sp, which corresponds to the sum of the edges of
this shortest path:

sp(c1, c2)

• the LCH Leacock and Chodorow approach [14] com-
putes the similarity and relies on the shortest path sp
and on the maximal depth MAX found within the ter-
minology (MAX=14 within the ontoEIM):

−log[
sp(c1, c2)

2 ∗MAX
]

• the Zhong approach [33] computes the distance and
relies on the absolute depth depth of terms and on their
closest common parent ccp. The milestone value m is
computed first for each term:

m(c) =
1

kdepth(c)+1

where c is a term, depth its absolute depth within a ter-
minology and k = 2 (normalization coefficient). Then,
the distance between two terms is computed:

2 ∗m(ccp(c1, c2))− (m(c1) + m(c2))
1http://www.r-project.org

where ccp is the nearest common parent and m mile-
stone values obtained previously.

Semantic distance and similarities are computed between
the MedDRA terms but also between the elements of their
formal definitions. More precisely, within the formal defini-
tions, we exploit elements provided by two axes: morphology
M (type of the abnormality) and topography T (anatomical
localization). Very often, these axes are involved in the defi-
nition of diagnostics [28] and they are also the most frequent
in the ontoEIM resource. As for two other axes (causality C
and expression E), as they seldom appear in formal defini-
tions of ontoEIM, we cannot rely on them for the comput-
ing of semantic distance and similarity. Formal definitions
are exploited in order to improve the semantic representa-
tion of terms and in order to make this representation more
fine-grained [25]. For the illustration of the approach, let’s
consider two ADR terms, Abdominal abscess and Pharyngeal
abscess defined as follows:

• Abdominal abscess: M = Abscess morphology, T =
Abdominal cavity structure

• Pharyngeal abscess: M = Abscess morphology, T =
Neck structure

In the definition of Pharyngeal abscess, the anatomical lo-
calization is underspecified (Neck structure), which actually
corresponds to the relations found within the SNOMED CT.
Currently we do not complete nor check out the correctness
of the formal definitions, although this could be planned for
the future. Figure 4 illustrates how the shortest paths sp are
computed between these two ADR terms and between the
elements of their formal definitions (axes T and M). The
weight of edges is set to 1 because all relations are of the
same kind (hierarchical), and the value of each shortest path
corresponds to the sum of weights of all its edges. For this
pair of terms we obtain the following values: spADR = 4,
spT = 10 and spM = 0. The computing of the semantic
distance and similarity is then performed according to the
three approaches described above: Rada, LCH and Zhong.
The obtained semantic distances or similarities sd are then
exploited to compute the unique distance between the ADR
terms: X

i∈{ADR,M,T}

Wi ∗ sd(c1i, c2i)X
j∈{ADR,M,T}

Wj

where {ADR, M, T} respectively correspond to terms mean-
ing the ADR, axis Morphology M and axis topography T ;
c1 and c2 are two ADR terms; W is the coefficient associ-
ated with each of the three terms; and sd is the semantic
distance or similarity computed on a given axis.

We carry out several experiments and vary several factors:

1. Formal definitions: (1) formal definitions are taken
into account and the semantic distance or similarity
is computed on three paths, or (2) formal definitions
are not taken into account and the semantic distance
or similarity is computed on the path of ADRs only;

2. Weights W put on the ADR terms and on M and T
axes of the formal definitions are set either to 1 or to
2 and all the possible combinations are tested;



Figure 3: General schema of the method.
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Figure 4: Computing of the shortest paths sp be-
tween two MedDRA terms (Abdominal abscess and
Pharyngeal abscess) and between the elements of
their formal definitions (axis T in blue and axis M
in red).

3. Semantic distance and similarity: the three approaches
(Rada, LCH and Zhong) are tested.

Further to the application of this method, a semi-matrix
7629*7629 is built. It contains the semantic distances and
similarities between the ADR terms, i.e. 7,629 PT terms.

4.2 Clustering of terms
Once the distances and similarities are computed, we use

them for the creation of clusters of terms. We exploit two
approaches for the clustering of ADR terms on the basis of
the semantic distances and similarities among them:

• R radius approach, where every ADR term is consid-
ered as a possible center of a cluster and its closest
terms are clustered together with it. We test several
threshold values with the three semantic distance ap-
proaches. The obtained clusters are not exclusive and
their intersection in not empty.

• HAC hierarchical ascendant classification is performed
through the R Project tools. This method first chooses

the best centers for clusters and then builds the hierar-
chy of terms by progressively merging smaller clusters
to obtain the bigger ones. We exploit the function
hclust. For this function to be applied, we perform
several steps. First, the matrix must be converted into
the specific format to be read and processed by the R
Project tools. We then call for a function which reads
the matrix and records its content together with the
labels of terms:

read.table(”matrix”, header=TRUE, sep=”;”,
fill=TRUE)->data
rownames(data) <- data$PT

The next step consists in computing the euclidean dis-
tance between the 7,629 terms of the matrix:

d <- dist(data[1:7628,2:7629], method=”euclidean”)

We then apply the hclust function for the hierarchical
clustering of the data and for the creation of a dendro-
gram with the method ward. This method ward con-
siders the union of every possible cluster pair at each
step, the two clusters whose fusion results in minimum
increase in information loss are combined.

fit <- hclust(d, method=”ward”)

Finally, the dendrogram is segmented into n clusters
(3,500 in this example):

cutree(fit,3500) -> fit.id

The obtained clusters are exclusive and their intersec-
tion is empty.

4.3 Evaluation of the generated clusters
The evaluation of the generated clusters is performed thanks

to their comparison with the SMQs and sub-SMQs. 20 hi-
erarchical SMQs and their 92 sub-SMQs are exploited as a
gold standard in this experiment. A quantitative evaluation
is performed with the three classical measures: precision P
(percentage of the relevant terms clustered divided by the
total number of the clustered terms), recall R (percentage of
the relevant terms clustered divided by the number of terms
in the corresponding SMQ) and F-measure F (the harmonic
mean of P and R). The association between the SMQs and
the clusters relies on precision values, because the experts
favour the precision. Different precision values have been
tested. During this step, we evaluate either one best cluster



Best Merging
P R F P R F

Radar 78.47 22.86 35.40 38.69 49.16 43.30
Radahac 90.30 15.02 25.75 60.54 30.00 40.11
Lchr 78.47 22.59 35.08 45.80 45.80 45.80
Lchhac 89.15 15.42 26.29 59.83 31.33 41.12
Zhongr 42.02 16.44 23.63 31.50 25.45 28.15
Zhonghac 91.93 15.76 26.90 62.80 30.00 40.60

Table 3: Average precision, recall and f-measure at
the level of sub-SMQs. Parameters: without formal
definitions (computing of the semantic distance for
ADR terms only)

Best Merging
P R F P R F

Radar 63.45 23.00 33.76 40.64 42.78 41.68
Radahac 90.23 16.67 24.27 61.93 31.89 42.10
Lchr 75.66 17.61 28.57 51.15 31.49 38.98
Lchhac 85.97 16.91 28.26 62.89 29.56 40.22
Zhongr 40.38 14.36 21.81 31.06 22.58 26.14
Zhonghac 91.31 15.72 26.82 63.17 32.10 42.56

Table 4: Average precision, recall and f-measure at
the level of sub-SMQs. Parameters: formal defini-
tions (computing of the semantic distance on three
axes)

for each SMQ or the n best clusters in which case these clus-
ters are merged. The n value is set automatically according
to the SMQs and sub-SMQs and depends on the content of
the clusters. It varies between one and 50 clusters merged.
As for the size of clusters, it varies between two and 162
terms. A qualitative evaluation is also performed, in which
we study the content of the generated clusters and perform
a failure analysis.

5. RESULTS
The 7,629 ADR terms from MedDRA have been fully pro-

cessed through the three semantic distance algorithms and
through the two approaches of clustering. With the clusting
approaches, we tested several thresholds. Thus, with the R
approach the thresholds tested for the semantic distance cor-
respond to the following intervals: two singletons 2 and 3 for
Rada, [0; 5.059] for LCH and [0; 0.49] for Zhong. In respect
with our data, the best thresholds appear to be: 2 for Rada,
4.10 for LCH and 0 for Zhong. As for the hclust clustering,
we tested several numbers of classes within the interval [100;
7,000], because the number of ADR terms is 7,629. The best
results are obtained with 3,500 classes. Number of terms per
class varies from 2 to 14. The results we present and discuss
have been obtained with these thresholds: with the Radius
approach the thresholds are set to 2 for Rada, to 4.10 for
LCH and to 0 for Zhong, while with hclust the number of
classes is set to 3,500. During the evaluation, the associa-
tion between the generated clusters and the gold standard is
performed on the basis of the percentage of common ADR
terms (precision). We tested several precision values within
the interval [10; 90]. 50% appears to be the best precision
rate with SMQs, while 30% is the best with sub-SMQs. We
also varied several other factors when setting up these algo-
rithms. The obtained clusters have been compared with the
SMQs and sub-SMQs introduced in the Material section.

The obtained evaluation results are presented in tables 3

Best Merging
P R F P R F

Radar 99.70 16.85 28.80 63.25 40.65 50.00
Radahac 100.0 5.85 11.05 63.80 18.45 28.62
Lchr 99.70 16.85 28.80 63.25 40.65 50.00
Lchhac 97.50 6.00 11.13 62.70 18.50 28.60
Zhongr 72.15 5.70 10.56 41.80 30.60 35.33
Zhonghac 100.0 6.80 12.80 60.50 19.70 29.66

Table 5: Average precision, recall and f-measure
at the level of SMQs. Parameters: without formal
definitions (computing of the semantic distance for
ADR terms only)

Best Merging
P R F P R F

Radar 95.05 16.80 28.55 63.25 43.95 51.86
Radahac 100.0 6.40 12.03 64.35 17.60 27.60
Lchr 93.90 11.30 20.17 57.20 27.25 37.00
Lchhac 97.50 6.45 12.10 65.45 17.75 28.00
Zhongr 66.45 7.10 12.80 37.40 26.95 31.30
Zhonghac 100.0 7.95 14.70 55.00 27.35 36.53

Table 6: Average precision, recall and f-measure at
the level of SMQs. Parameters: formal definitions
(computing of the semantic distance on three axes)

and 4 for sub-SMQs, and in tables 5 and 6 for the whole
SMQs. Moreover, we distinguish the experiments in which
the formal definitions have been exploited (tables 4 and 6)
or not (tables 3 and 5). In these tables, for each seman-
tic distance and clustering method, we indicate the average
values for the precision, the recall and the f-measure. The
first set of the evaluation values is indicated only when the
best cluster is exploited (Best), the second set of the eval-
uation values is indicated when n best clusters are grouped
together.

We can observe that globally the semantic distance ap-
proach generates the clusters which show a very high preci-
sion at both evaluated levels: SMQs and sub-SMQs. When
the merging of n best clusters is performed, the recall is im-
proved while the precision decreases. With sub-SMQs, the
hclust clustering method provides with a better precision
than with the Radius clustering. We discuss these differ-
ent results and observations with more details in the next
section.

6. DISCUSSION

6.1 Material
The ontoEIM resource, exploited in this work, is currently

built thanks to the projection of MedDRA terms on the
Snomed CT. Since this process is performed through the
UMLS the alignment between these two terminologies are
those already defined in the UMLS. As we focused on in the
material section, the alignment is not perfect. This situation
has a negative effect on the success of the method we apply
for clustering the terms. Our group is currently working
on the improvement of the alignment rate. We exploit the
existing work on the alignment of the MedDRA terms [3,
21] and also perform additional experiments [19] to improve
the current alignment rate. Lexical mapping and semantic
categorization methods allow to reach both a high sensitivity
and the semantic constraints. Nevertheless, this task is not



finished yet and the full mapping of the MedDRA terms still
requires more effort.

6.2 Comparison of the clusters with SMQs and
sub-SMQs

The generated clusters have been evaluated with the SMQs
and sub-SMQs. The applied method provides a high preci-
sion. This means that several small and precise clusters
of terms are generated. In tables 3 and 4, at the levels of
the sub-SMQs, we can clearly observe that the best clus-
ter always provides with a very high precision and covers
up to 23% of the required terms, although it may contain
irrelevant ADR terms as well. When the n best clusters
are merged, on the one hand the recall is improved because
more relevant terms are grouped together, and on the other
hand the irrelevant terms are accumulated and this causes
the decrease of precision. This result meets the expectations
of the pharmacovigilance experts. Indeed, they need clus-
ters of the SMQ terms which are smaller than the SMQs
and which, for this reason, will give more precise sets of the
pharmacovigilance cases. At the level of SMQs (tables 5
and 6), the precision is still very high with the best clusters,
but the recall becomes really low. Indeed, the SMQs are
much larger than their sub-SMQs and this yields normally
the lesser recall. Up to now, we presented and discussed the
average evaluation figures, but there is a variability in results
and the situation varies a lot according to SMQs and sub-
SMQs. In table 8, we present the results for two hierarchical
SMQs. For each of these SMQs, we first indicate the figures
for the whole SMQ and then the figures by its sub-SMQs.
The performances in retrieving the same PT terms depend
on the number of terms within the SMQ of sub-SMQ. We
can indeed observe that the performances are higher at the
level of the sub-SMQs.

Hence, our results show that the semantic distance meth-
ods are suitable for the generation of reduced and precise
clusters of ADR terms. In our opinion, these clusters can be
exploited in two contexts:

• Creation of the SMQs. The clusters can be used for
the creation of the sub-SMQs and of the SMQs. In
this case, they will help the experts involved in the
building of the SMQs and will especially be helpful for
browsing the MedDRA terms and for the collection of
semantically close ADR terms.

• Mining the pharmacovigilance databases. The clusters
can also be used for the segmentation of the existing
SMQs into several homogeneous subsets. Such clus-
ters can indeed be exploited for the safety surveillance
and would reduce the set of pharmacovigilance cases
to filter and to analyse.

Our results are encouraging, but a thorough evaluation of
the clusters within these contexts is still to be performed.
Let’s compare our results to those previously obtained in our
group in which the terminological reasoning was applied [12]:
in this work the sensitivity (or precision) is evaluated and
shows the average value of 0.82, while the specificity is not
evaluated. In several experiments and settings of our work,
the average precision obtained is higher and we also evaluate
the recall. Besides the grouping approach exploited, the
main difference is related to the material: WHO-ART terms
(which alignment reaches up to 85.9%) and subsets of SMQs

are exploited in the previous work [12], while we exploit the
MedDRA terms and the whole SMQs.

6.3 Factors which influence the performances
We performed several experiments and varied several set-

ting at different steps of the method. We discuss here those
which influence the results:

• Semantic distances. We applied three semantic dis-
tances or similarity algorithms (Rada, LCH and Zhong).
It is interesting to observe that the most simple algo-
rithm Rada, which relies only on the number of edges,
appears to be the most efficient. The LCH algorithm
provides also good results close to those of the Rada
algorithm. The common feature between these two al-
gorithms is the shortest path sp, which means that the
maximum depth MAX involved in the LCH algorithm
has no impact. As for the Zhong approach, which also
exploits the absolute depth of terms, this criteria does
not seem to be relevant for clustering the pharmacovig-
ilance terms. Indeed, in this task, it may be important
to cluster terms from lower and also from higher hier-
archical levels, while the Zhong algorithm favours hi-
erarchically lowest terms.

• Formal definitions. An important difference is ob-
served in relation with the exploitation of the formal
definitions: when we use only the ADR terms, the per-
formances are always better than when we use these
terms with their formal definitions. This situation is
due to the incompleteness of the currently available
formal definitions. As we reported in the Material sec-
tion, only a small number of terms are defined on the
exploited axes. But a manual evaluation of several in-
correct clusters, did show that the formal definitions of
the involved terms where not complete. In such cases,
the semantic distance measure is favouring only the
defined axis within the formal definitions (morphology
or topography), which leads to a distorted semantic
representation of the terms and to a wrong clustering.

• Coefficients of axes. We tested two coefficients, 1 or 2,
associated with ADR terms and the axes of formal def-
initions. The weighting of axes allows indeed to give
more importance to one of the aspects of the definitions
of ADR terms. All the possible combinations were set
up and evaluated. The best results are obtained when
the coefficients have the following values: WADR = 1,
WM = 2, WT = 1. This result suggests that the mor-
phology axis M is the main factor for the clustering
of ADRs because it specifies the kind of morphologi-
cal abnormality (abscess, inflammation, segmentation,
cancer ...) and can provide with important indicators
for the clustering of terms related to a given medical
condition. Like in a previous work [25], it appears also
that the anatomical localization is a secondary factor.

• Clustering methods. Among the two clustering meth-
ods tested, Radius and hclust, Radius approach ap-
pears generally to provide with better results. The
main difference between the generated clusters is that
hclust clusters are disjoint sets of terms, while Radius
clusters may overlap. For this reason, the precision
is better with hclust clusters, but the recall is then
very low. With the Radius clustering, the precision is



ID Names of the hierarchical SMQs and of their sub-SMQs Number of PT Evaluation
levels s-smq P R F

20000060 Cerebrovascular disorders 3 5 198 49 70 57
Central nervous system haemorrhages and cerebrovascular conditions 30 60 65 62
Ischaemic cerebrovascular conditions 67 55 68 62
Haemorrhagic cerebrovascular conditions 35 33 71 50
Conditions associated with central nervous system 30 60 65 62
Cerebrovascular disorders, not specified as haemorrhagic or ischaemic 18 60 37 46

20000038 Haemorrhages 2 2 422 36 51 42
Haemorrhage terms (excl laboratory terms) 331 99 32 49
Haemorrhage laboratory terms 91 60 42 50

Table 7: Evaluation figures of SMQs and their sub-SMQs.

Names of the SMQs Number of terms Reference After expertise
SMQ clu com P R F P R F

Central nervous system haemorrhages
and cerebrovascular conditions

23 25 15 60 65 62 84 86 85

Haemorrhage terms (excl laboratory
terms)

192 95 63 99 32 49 100 33 50

Table 8: Evaluation figures of SMQs and their sub-SMQs.

less elevated but still very good, although the recall
becomes interesting. Hence, the whole performances
(f-measure) are better than with hclust clusters. This
fundamental difference between the two sets of clusters
leads to another observation: with the hclust approach,
the position of ADR terms is exclusive to a given clus-
ter, while in reality, a given ADR term may appear in
different SMQs and sub-SMQs. For instance, the term
renal insufficiency occurs in 11 SMQs and in six sub-
SMQs. The Radius clustering approach, it allows the
same ADR term to belong to several clusters, which
suits better our applicational context.

• Best cluster or merged clusters. Another important
difference is observed when we use the best cluster for
a given SMQ (or sub-SMQ) or the merging of the n
best clusters. As we already discussed, the best cluster
often yields a very high precision, while the merging
of the n best clusters will decrease the precision but
improve the recall. In the use case where the precision
is important, and this situation is the most favourable
to pharmacovigilant experts, the best cluster strategy
may be more convenient.

6.4 Failure analysis
We performed a qualitative and manual analysis with a

pharmacovigilance expert of several clusters and sub-SMQs.
We present here the analysis for two sub-SMQs: Central ner-
vous system haemorrhages and cerebrovascular conditions
and Haemorrhage terms (excl laboratory terms).

The sub-SMQ Central nervous system haemorrhages and
cerebrovascular conditions contains 23 aligned PT terms,
while the associated grouping contain 25 terms. This group-
ing is obtained further to the merging of ten clusters. 15
terms are common to both the sub-SMQs and the grouping.
This gives the following evaluation measures: P=60, R=65
and F=62. We performed the analysis of the noise (false
positives) and of the silence (false negatives). Among the

ten terms corresponding to false positives, the term Locked
in syndrome is provided by five different clusters; terms
Limb traumatic amputation and Post traumatic osteoporosis
are provided by four clusters, which means that they have
an elevated confidence. The remaining terms (Anosognosia,
Millard Gubler syndrome, Frostbite, Hereditary spastic para-
plegia, Motor dysfunction and Spastic diplegia) are proposed
by only one cluster. A manual analysis of these false posi-
tives indicates that some of these terms (Locked in syndrome,
Anosognosia, Spastic diplegia and Motor dysfunction) are re-
lated to the consequencies of stroke. In our expert’s opinion,
they should be included in this sub-SMQ because other con-
sequences of stroke such as Agnosia or Diplegia are already
present. The term Hereditary spastic paraplegia corresponds
to an hereditary medical problem: therefore genetic factors
are responsible for this event, they are not related to a drug.
Hence, such terms should not be considered for inclusion in
clusters. As a perspective, we can filter out terms mean-
ing hereditary problems, which will improve the precision of
the clusters that consist only of potential ADRs. The term
Millard Gubler syndrome was not in the sub-SMQ in the
version we exploit but it has been added later, which means
that this clustering should be considered as correct. The
four remaining terms (Limb traumatic amputation, Frost-
bite, Chillblains and Post traumatic osteoporosis) are true
false positives. If we update the evaluation measures for
this sub-SMQ, according to the performed analysis, it gives:
P=84 and R=86. Among the eight terms corresponding to
the false negatives (Central pain syndrome, Paresis, Carotid
artery aneurysm, Cerebral aneurysm ruptured, Syphilitic, In-
tracranial aneurysm, Carotid artery dissection, Amaurosis
fugax and Dysarthria), the semantic distance and similarity
values are too large within the ontoEIM resource and for the
thresholds we apply.

The sub-SMQ Haemorrhage term (excl laboratory terms)
contains 192 aligned PT terms, while the associated group-
ing contains 65 terms. 63 terms are common to both of them.



This grouping is obtained thanks to the merging of ten clus-
ters. The evaluation measures are: P=99, R=32 and F=49.
The analysis of false positives indicates that only two terms
(Foetal maternal haemorrhage and Intra abdominal haem-
orrhage) are in this situation. They are provided by two
clusters. These two terms have been added in the newest
version of the SMQs, which means that the precision for
this sub-SMQ would be 100%. As for the 129 false negative
terms, the semantic distance is again too large within the
ontoEIM resource.

7. CONCLUSIONS
The proposed method applies the semantic distance and

clustering approaches for the creation of clusters of ADR
terms. Several experiments have been performed in order to
test different factors which may influence the precision and
recall performances. The obtained clusters provide with very
good precision and we propose ways (merging of clusters) to
improve the recall. The evaluation of system-generated clus-
ters with SMQs and sub-SMQs indicates that the compari-
son with sub-SMQs is globally more performant because the
terms are more homogeneous and semantically close within
the sub-SMQs. This indicates that our approach can be
helpful for the creation of fine-grained and hierarchically
structured SMQs. Among the semantic distance and sim-
ilarity algorithms we applied, the simplest approach (Rada)
is the most efficient. It appears also that consideration of the
term depth is not relevant. The exploitation of formal def-
initions, because of the currently missing information, have
a negative impact. This aspect should be enriched in the
future, particularly because we found out that morphology
M axis provides with a very important information. Finally,
the Radius approach, which generates non exclusive clusters,
is more suitable for the creation of SMQs and sub-SMQs,
where a given term may belong to several sets. Comparing
to a previous work performed in our group, our results reach
a much better level of relevance, while the manual analysis
of the clusters indicates that the real results may be even
better.

Future studies may lead to the identification and defini-
tion of other factors which influence the quality of clusters.
For instance, the performances vary according to the SMQs
and it appears that different strategies should be used for
different SMQs, while currently we apply the same setting
of the method to all the SMQs and sub-SMQs. More robust
distances and clustering methods can also be used in the fu-
ture work, as well as approaches for a better generation and
evaluation of the hierarchical structures (such as hierarchi-
cal SMQs). We can also define a set of markers which would
allow to filter out the irrelevant terms, such as those related
to hereditary or chronic medical problems, and not induced
by drugs. We can start applying the proposed method to
other terminologies in order to test its portability. In this
way, clusters representing the same medical condition in dif-
ferent terminologies (e.g., MedDRA, WHO-ART, SNOMED
CT, UMLS) may also be created. Methods provided by Nat-
ural Language Processing may enrich and improve the clus-
ters. Besides, the obtained clusters should also be evaluated
through their impact on the pharmacovigilance tasks and
through the exploring of the pharmacovigilance databases.
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