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Abstract. In different applications (i.e., information retrieval, filtering
or analysis), it is useful to detect similar terms and to provide the possi-
bility to use them jointly. Clustering of terms is one of the methods which
can be exploited for this. In our study, we propose to test three methods
dedicated to the clustering of terms (hierarchical ascendant classification,
Radius and maximum), to combine them with the semantic distance al-
gorithms and to compare them through the results they provide when
applied to terms from the pharmacovigilance area. The comparison indi-
cates that the non disjoint clustering (Radius and maximum) outperform
the disjoint clusters by 10 to up to 20 points in all the experiments.

1 Introduction

In different applications, such as information retrieval, filtering or analysis, it is
useful to be able to detect similar terms. For instance, the terms heart attack,
myocardial infarction and heart disease are semantically close: when they occur
in a document or in a corpus, it may be useful indeed to provide the system
with such knowledge, which may allow providing more complete results and also
reducing the false negatives. Detection of semantically close words and terms is
a very intensive research topics and several studies proposed various methods:
paraphrasing [1–3]; term variation detection [4–6]; semantic similarity comput-
ing [7–12]; terminology structuring or alignment [13–16], etc. However, once the
semantic relatedness between terms is computed, it shows often different degrees
of relatedness. Hence, it may be important to distinguish between those terms
which are more close and those which have broader and weaker semantic relat-
edness between them. Typically, the clustering methods are helpful and can be
exploited for this. The objective of our work is to compare several clustering
methods. The comparison is done with terms from the pharmacovigilance area
(usually meaning adverse drug reactions), which have been previously processed
with semantic distance and similarity algorithms.

2 Background

We distinguish three types of clustering methods, according to the types of the
clusters they generate:
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– Disjoint clusters, in which a given object may belong to one cluster only. The
disjoint clustering is done with algorithms such as k-means [17], k-medoids
and PAM [18]. They are adapted to the processing of large data. These
algorithms have two specificities: it is necessary to indicate the number of
clusters to be generated and the generated clusters are disjoint;

– Non disjoint clusters, in which a given object may belong to more than
one cluster. The non disjoint clustering is performed with so called fuzzy or
soft algorithms. The fuzzy algorithms (fuzzy c-means [19], fuzzy c-medoids
[20] or axial k-means [21]) state the degree up to which an object belongs
to each concerned cluster. The difficulty with these algorithms is that they
require to set up the thresholds, which may be a difficult step. The few
existing soft clustering algorithms (Radius algorithm [22], PoBOC [23], OKM
[24] or Maximum algorithm integrated within the R project) also allow an
intersection between the generated clusters but without specifying the degree
of relevance of each entity to a given cluster.

– Hierarchical clusters are considered as non disjoint when viewed through the
dendrogram (smaller clusters are included into the larger clusters) or disjoint
once the dendrogram is cut. Several hierarchical clustering algorithms have
been proposed (AGNES [25, 26], BIRCH [27], CURE [28] and DIANA [26]).
It is not necessary to set up the classes number, which eases the exploitation.

Our objective is to compare clustering algorithms within context related to the
pharmacovigilance (detection and prevention of adverse drug reactions). The
specificity of our data is that terms often show several semantic facets: because
of their inherent semantics (i.e., Respiratory failure neonatal is a malignancy, an
abnormality of the respiratory system and a neonatal abnormality) and because
of their medical manifestations (i.e., Respiratory failure neonatal may appear as
sign or symptom of several medical problems: i.e., Hypovolaemic shock condi-
tions, Anaphylactic/anaphylactoid shock conditions, Hypoglycaemic and neuro-
genic shock conditions, Torsade de pointes). For this reason, we put the priority
on the non disjoint clustering methods, which allow one term to belong to more
than one cluster, and compare them with the disjoint clustering.

3 Material

Pharmacovigilance terms: ontoEIM resource. The semantic resource on-
toEIM [29] contains terms which describe the adverse drug reactions (i.e., signs
and symptoms, diagnostics, therapeutic indications, complementary investiga-
tions, medical and surgical procedures, medical and family history). The terms
are provided by the MedDRA terminology [30]. The difference with MedDRA is
that the ontoEIM terms have been restructured thanks to their projection on the
terminology SNOMED CT [31], done through the exploitation of the UMLS [32],
where an important number of terminologies are already merged and aligned,
among which MedDRA and SNOMED CT. We exploit the preferred MedDRA
terms PT. Their current rate of alignment with those from SNOMED CT is
rather weak: 51.3% (7,629 terms). The restructuring of MedDRA terms makes
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Fig. 1. General schema of the method.

the structure more fine-grained: the SNOMED CT-like hierarchy within on-
toEIM contains also terms added to fill in the intermediate levels absent among
MedDRA terms. The maximal number of the hierarchical levels within ontoEIM
reaches up to 14, while only five hierarchical levels are available in MedDRA.

Reference clusters: Standardized MedDRA Queries (SMQs). Cur-
rently, 84 Standardized MedDRA Queries (SMQs) are available, which have been
created manually by international boards of experts. The SMQs gather MedDRA
terms related to a given safety topic (or medical problem), such as Cardiac ar-
rhythmias, Malignancies or Hepatic disorders. The SMQs are mostly plain lists
of terms, but 20 SMQs have the particularity to provide a hierarchical structure.
The number of the hierarchical levels they contain vary between 2 and 4. The
hierarchically structured SMQs are composed of sub-SMQs (n=92). We exploit
these different levels of the reference data: SMQs (n=84), hierarchical SMQs
(n=20) and sub-SMQs (n=92).

4 Methods

Figure 1 presents the general schema of the method organized in three main
steps: (1) semantic distance and similarity computing between MedDRA terms,
(2) MedDRA terms clustering, (3) and evaluation of the obtained clusters against
the reference data. For the implementation, we exploit Perl and R1 languages.

4.1 Computing of the semantic distance and similarity

Semantic distance and similarity algorithms state the semantic relatedness de-
gree between two terms. For instance, Respiratory failure neonatal term is closer
to term Respiratory failure than to Cardiac failure. The semantic distance and
similarity algorithms may require the use of corpus and/or of terminologies. In
our work, we use the terminological resource ontoEIM. Three measures are ap-
plied to the 7,629 PT MedDRA terms present in the ontoEIM resource in order
to compute the distance and similarity values for each pair of terms t1 and t2:

1 http://www.r-project.org
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– the Rada algorithm [7] computes the semantic distance and relies on the
detection and computing of the shortest path sp, which corresponds to the
sum of the edges of this shortest path: sp(t1, t2);

– the LCH Leacock and Chodorow algorithm [9] computes the semantic sim-
ilarity and relies on the shortest path sp and on the maximal depth MAX

found within the terminology (MAX=14 within ontoEIM): −log[ sp(t1,t2)2∗MAX ];
– the Zhong approach [10] computes the semantic distance and relies on the

absolute depth depth of terms and on their closest common parent ccp. The
milestone value m is computed first for each term: m(t) = 1

kdepth(t)+1 , where
t is a term, depth its absolute depth within a terminology and k = 2 (nor-
malization coefficient). Then, the distance between two terms is computed:
2 ∗m(ccp(t1, t2))− (m(t1) +m(t2)), where ccp is the closest common parent
and m milestone values obtained previously.

Further to the application of these three algorithms, we build three symmetrical
matrices 7629*7629 (one for each algorithm). They contain the semantic distance
and similarity values between the MedDRA PT terms from ontoEIM.

4.2 Clustering of terms

Once the distances and similarities are computed, we use them for the creation
of clusters of terms. We exploit and compare three methods for the clustering of
the terms applied to matrices with the semantic distances and similarities:

– HAC hierarchical ascendant classification is performed through the R Project
tools (hclust function). This method first chooses the best centers for clusters
and then builds the hierarchy of terms by progressively merging smaller
clusters to obtain the bigger ones and to build one unique dendrogram. The
dendrogram is then segmented into x clusters. We test the following values:
{100}, {200}, {300}, {400}, {500}, {1000}, {1500}, {2000} . . . {7000}. After
the segmentation, the obtained clusters are exclusive.

– Radius method, where every ADR term is considered as a possible center of
a cluster and its closest terms are clustered together with it. We test several
threshold values x with the three semantic measure approaches, i.e., with
Rada: ∀x ∈ N, such as x ∈ [1; 5]; with Zhong: ∀x ∈ N, such as x ∈ [0.001;
0.002; . . . ; 0.021]. The obtained clusters are not exclusive;

– Max maximum method is similar to the Radius approach but is more per-
missive. Iteratively, it computes the cost of the clusters union, while the
radius approach computes the cost of the inclusion of each term (it does
not consider the notion of the cluster). The Max thresholds x tested: ∀x ∈
N, such as x ∈ [2; 5]. The following steps are repeated for each node:
1. Assign a node a1 to a cluster c;
2. Create the list l containing all the remaining nodes;
3. For each node ai from l, compute the cost of the union (c, ai). The cost

corresponds to Maximum(distance) within a cluster, hence the name
of the method. If there is more than one node with the same minimal
distance value (step 6), then the comparison is done with the next greater
value and so on;
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SMQs Hier. SMQs sub-SMQs

RadiusRada Threshold 4 4 2
RadiusZhong Threshold 0.006 0.019, 0.013 0.003, 0.004

HACRada Nb of classes 300, 400, 500, 2500 100, 200 3500
HACZhong Nb of classes 500 100 1500, 2500, 4000

MaxRada Threshold 4 5 4
MaxZhong Threshold 0.021 0.021 0.009

Table 1. Best clustering parameters (thresholds and number of classes) defined thanks
to the cross-validation.

4. Delete all nodes ai, which belong to l and whose union cost with cluster
c is above a given threshold;

5. If l is empty, terminate the algorithm;
6. The node from l which shows the lowest union cost is added to the cluster

c and removed from the list l;
7. Restart from the step 3.

4.3 Generated clusters evaluation

Generated clusters evaluation is performed thanks to their comparison with all
the SMQs, the hierarchical SMQs and the sub-SMQs. A cluster is associated to
the SMQ with which it has the maximal F-measure. Setting of thresholds and
of classes number is performed through a ten-fold cross-validation: the data are
partitioned into ten subsets, one subset is used for the setting up the methods
while the remaining nine subsets are used for the evaluation against the reference
data. This process is done ten times with a different training subset each time.
Values which show the best performance on training set are applied on the test
set. Average performance is then computed with three classical measures (where
relevant terms are those which are clustered together and which also belong to
the corresponding SMQ): precision P (percentage of the relevant terms clustered
divided by the total number of the clustered terms), recall R (percentage of the
relevant terms clustered divided by the number of terms in the corresponding
SMQ) and F-measure F (the harmonic mean of P and R). The final evaluation
values are the mean values of those obtained at each cross-validation step. We
perform also a detailed analysis of individual clusters and of failures.

5 Results and Discussion

Because the LCH and Rada algorithms are similar (LCH adds the log[2∗MAX]
constant), values they provide are also close. Testing these two algorithms al-
lowed to check out the performed computing correctness. In the following, we
present and discuss results obtained with Rada and Zhong similarity distances.

In Table 1, the best settings defined, further to the cross-validation, for the
two semantic algorithms and the clustering methods are presented. On the whole,



6 M Dupuch, C Engström, S Silvestrov, T Hamon, N Grabar

SMQs Hier. SMQs sub-SMQs
P(%) R(%) F P(%) R(%) F P(%) R(%) F

RadiusRada 45 32 36 40 33 35 56 36 43
RadiusZhong 34 24 27 26 36 30 36 27 30

HACRada 44 11 17 26 12 16 60 20 29
HACZhong 34 16 21 30 16 18 53 22 29

MaxRada 49 30 37 56 26 36 46 38 39
MaxZhong 38 24 29 36 26 30 59 23 33

Table 2. Average performance on 0-100% scale (precision, recall, F-measure), against
the three reference data sets, obtained with the best clustering parameters defined.

we observe that settings, which lead to smaller clusters (lower Rada and Zhong
thresholds and higher number of classes), prove to suit best the generation of
sub-SMQs. On the contrary, the hierarchical SMQs require the largest clusters
(high Rada and Zhong thresholds and lower number of classes). The threshold
values required for the generation of the whole set of the SMQs (hierarchical
and non hierarchical, but excluding separate sub-SMQs) are intermediate. Such
an observation was expected. It is closely related to the size of the generated
clusters and it follows the logics of the reference data: the sub-SMQs provide the
smallest clusters, while the hierarchical SMQs the largest.

In Table 2, we indicate average evaluation values (precision, recall and F-
measure) obtained with the three reference data sets (SMQs, hierarchical SMQs
and sub-SMQs) and with the best parameters (Table 1). During cross-validation,
we give advantage to F-measure. Compared to previous experiments without
cross-validation, which gave advantage to precision [22], we obtain currently a
best balance between precision and recall, and the whole performance is im-
proved by 5 to 10%. Still, precision values remain higher than recall values. This
is due to the fact that the generated clusters, whatever the methods and refer-
ence data, are smaller than the reference data. The generated clusters typically
capture a given aspect of the reference SMQs: their recall is low, while precision
may reach up to 60%. On the whole, the task related to the automatic creation of
the SMQs remains difficult. With the currently exploited resources and methods
we can capture but partially the terms relevant to a given medical condition.

With values indicated in Table 2, we can also propose a comparison between
the three clustering methods tested in this work. Whatever the reference data,
the non disjoint clusters outperform the disjoint HAC clusters by 10 to 20 points
of F-measure. The only situation in which the HAC method is better is observed
with precision obtained with the Rada algorithm and sub-SMQs. Besides, this
is the best precision we obtain with the presented experience: 60%. The next
best precision is also obtained with the sub-SMQs but with Max method and
Zhong algorithm: 59%. Our results seem to indicate that non disjoint clustering
is more suitable for the aimed task. MedDRA terms may indeed be specific to
more than one medical condition and belong to several clusters. Logically, this
aspect is better captured when the non disjoint clusters are generated.
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Precision Recall F-measure
average min max average min max average min max

RadiusRada 56 4 100 36 7 100 43 8 96
HACRada 60 12 98 20 1 100 29 2 58
MaxRada 46 7 100 38 8 100 39 14 74

Table 3. Average, minimal and maximal values for precision, recall and F-measure
obtained against the reference sub-SMQs with the best clustering parameters defined
with the Rada algorithm.

(a) Precision (b) Recall (c) F-measure

Fig. 2. Evaluation results against the 92 sub-SMQs (Precision, Recall and F-measure)
and the three clustering methods applied to the Rada semantic distance matrix.

In Table 2, we presented the average values of the evaluation measures, while
there is an important variability according to the clusters and the reference data.
Hence, in Table 3, we present also, along with the average values, the minimal
and maximal performance obtained with the reference sub-SMQs. We can see
that the interval is very important and that there is indeed a very important vari-
ability across the sub-SMQs, as presented in Table 3, but the situation is similar
with two other sets of the reference data. In relation to this observation, some of
the SMQs are better reproduced than others. Among the best clusters, we have
Gastrointestinal obstruction, Liver-related coagulation and bleeding disturbances,
Ischaemic cerebrovascular conditions. Among the less competitive clusters, let’s
cite Reproductive premalignant disorders and Pregnancy complications.

In Figure 2, we present the evaluation values for individual sub-SMQs. In
this circular lay-out, the results are not projected on the x and y axes. The 360
degrees correspond to the 92 reference sub-SMQs, while the radius 0-100 scale
allows to position the evaluation measure values. For a given evaluation measure,
the values are first sorted in a decreasing order and then projected. While reading
the figures, it is necessary to notice that more a given line is closer to the outer
border, the better the results for the corresponding method and measure. For
instance, we can see that precision values start with 100% performance, that
more than 1/3 of the precision values are higher than 50%, and that less than
1/4 of the precision values are lesser than 50%. We can see also that the highest
F-measure values do not start with 100%, but with lower values (see Table 3).
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HACRada RadiusRada MaxRada

P R F P R F P R F

Anaphylactic anaphylactoid shock conditions 100 8 14 60 23 33 43 23 30
Infectious biliary disorders 40 18 25 86 54 66 69 81 75

Table 4. Detailed performance for two randomly chosen clusters.

Figure 2 provides several observations: (1) once again we can observe that there
is an important variability between the SMQs; (2) very often, the precision is
high while the recall is low (the generated clusters are smaller than the SMQs and
show their different aspects); (3) the HAC clusters provide the lesser F-measure
and recall performance (the red line, which correspond to this clustering is the
closest to the center of the circles); (4) the Radius and Max clustering methods
are comparable (the corresponding lines are often superimposed). We observe
also that recall and F-measure are lower with HAC than with the other two
clustering methods, which is due to the disjoint clusters generated by HAC.

We did a detailed analysis of two randomly chosen clusters (corresponding
to two sub-SMQs), presented in Table 4: Anaphylactic anaphylactoid shock con-
ditions and Infectious biliary disorders. Anaphylactic anaphylactoid shock condi-
tions sub-SMQ contains 13 terms. The HAC method proposes only one relevant
term (Renal failure acute). While Radius and Max method provide with respec-
tively 5 and 7 relevant terms. Situation is very similar with the Infectious biliary
disorders cluster: it contains 11 terms, among which 5 are also provided by HAC,
7 by Radius and 13 by Max. In both cases, the non disjoint clustering (Radius
and Max) is more suitable for the aimed task than the disjoint clustering (HAC).
Terms which are not collected with our methods are too distant in the exploited
resource. Other methods and approaches should be used to capture them.

6 Conclusion and Perspectives

We presented an experiment on the comparison between three clustering meth-
ods (hierarchical ascendant classification, Radius and Max) applied to phar-
macovigilance terms, which have been previously processed with the semantic
distance and similarity algorithms. Our objective is to compare between disjoint
and non disjoint clustering methods. The exploited reference data are composed
of manually created sets of pharmacovigilance terms related to various medical
conditions. The cross-validation allowed to define the best clustering param-
eters (thresholds and number of classes), which favor the global performance
(F-measure) and which reach the best balance between precision and recall. As
for the comparison between the clustering methods, the non disjoint clustering
(Radius and Max) outperform the disjoint clusters by 10 to up to 20 points for
nearly all the experiments and evaluation measures. Hence, the non disjoint clus-
tering captures better the multi-facet characteristics of the pharmacovigilance
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terms. We assume these results are also relevant to other tasks and applications
dealing with semantics and language data.

In the future, we plan to apply the proposed methods to other terminological
resources, such as UMLS [32] or its subsets. In the current experience, only in-
dividual clusters have been considered, while we showed in past work that their
merging is helpful as it allows increasing the recall almost without decreasing
precision: merging of the clusters issued from the current study is a perspective.
We also observed that there is a great variability across the clusters and the
reference data. Currently, we apply the same setting to all the reference data,
while we can distinguish several settings suitable for subsets of the medical con-
ditions. We assume, this may capture better the inherent semantics of these
subsets and to improve the overall results. Moreover, we plan to combine this
method with other methods (exploitation of corpora and of Natural Language
Processing methods...). Finally, we would like to test the proposed methods for
the creation of novel SMQs describing not yet covered medical conditions.
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